【什么是尤拉公式-图】百科知识点

来源:学大教育    日期:2017-12-10 16:19:58

数学涵盖了很多知识面,在学习数学的过程大家需要掌握很多知识点,提前了解这些知识点对大家学好数学是很有帮助的,为此下面学大教育为大家带来【什么是尤拉公式-图】百科知识点,希望大家能够记忆好这些知识点。

【什么是尤拉公式-图】百科知识点

在任何一个规则球面地图上,用 R记区域个 数 ,V记顶点个数 ,E记边界个数 ,则 R+ V- E= 2,这就是欧拉定理 ,它于 1640年由 Descartes首先给出证明 ,后来 Euler(欧拉 )于 1752年又独立地给出证明 ,我们称其为欧拉定理 ,在国外也有人称其 为 Descartes定理。

R+ V- E= 2就是欧拉公式。

( 1)当 R= 2时 ,由说明 1,这两个区域可想象为 以赤道为边界的两个半球面 ,赤道上有两个“顶点” 将赤道分成两条“边界”,即 R= 2,V= 2,E= 2;于是 R+ V- E= 2,欧拉定理成立.。

( 2)设 R= m(m≥ 2)时欧拉定理成立 ,下面证明 R= m+ 1时欧拉定理也成立 。

由说明 2,我们在 R= m+ 1的地图上任选一个 区域 X ,则 X 必有与它如此相邻的区域 Y ,使得在 去掉 X 和 Y 之间的唯一一条边界后 ,地图上只有 m 个区域了;在去掉 X 和 Y 之间的边界后 ,若原该边界两端 的顶点现在都还是 3条或 3条以上边界的顶点 ,则 该顶点保留 ,同时其他的边界数不变;若原该边界一 端或两端的顶点现在成为 2条边界的顶点 ,则去掉 该顶点 ,该顶点两边的两条边界便成为一条边界 。于 是 ,在去掉 X 和 Y之间的唯一一条边界时只有三种 情况:

①减少一个区域和一条边界;

②减少一个区 域、一个顶点和两条边界;

③减少一个区域、两个顶 点和三条边界;

即在去掉 X 和 Y 之间的边界时 ,不 论何种情况都必定有“减少的区域数 + 减少的顶点数 = 减少的边界数”我们将上述过程反过来 (即将 X 和 Y之间去掉的边 界又照原样画上 ) ,就又成为 R= m+ 1的地图了 ,在 这一过程中必然是“增加的区域数 + 增加的顶点数 = 增加的边界数”。

因此 ,若 R= m (m≥2)时欧拉定理成立 ,则 R= m+ 1时欧拉定理也成立.。

以上就是学大教育网为大家带来的【什么是尤拉公式-图】百科知识点,希望大家能够多掌握与数学学习相关的百科知识,这样才对以后的数学学习有所帮助。

查看更多大连文学百科最新消息》
最后阅读完本文(【什么是尤拉公式-图】百科知识点)之后,学大教育的小编将为大家推荐更多的相关文章,内容相当精彩,一定不要错过。

学大辅导热线:

《热点聚合》:

热门课程推荐

  • 2017小学一年级英语预备班
    2017小学一年级英语预备班
  • 剑桥国际少儿英语预备班
    剑桥国际少儿英语预备班
  • 小学一年级英语综合培优班
    小学一年级英语综合培优班
  • 小学二年级英语综合培优班
    小学二年级英语综合培优班

学大教育文章版权及声明

用微信扫一扫

学大教育